Abstract. *Tribolium castaneum* (Herbst, 1797) is known as one of main pests of stored canola seeds worldwide, however, the cases of infestation in Brazil are still not reported. Due to its potential pest status allied to the increasing production of canola in Brazil, this work aims to evaluate the establishment of *T. castaneum* in canola stored seeds, as well as the effects of different inert dusts to its control. For establishment determination, three substrates were tested: wheat bran (control); whole wheat seeds; and whole canola seeds. The insects remained in the substrates for 14 days, when mortality was counted, and then for additional seven days before get removed, for progeny assessment at 66 days after initial exposure. For the insecticide potential of inert dusts, four treatments were tested in canola seeds as substrate: diatomaceous earth; basaltic rock powder; vegetable charcoal powder; and untreated canola seeds as control treatment. The beetles were exposed to the treated substrate and cumulative mortality was counted each two days for 15 days. Lower adult mortality and higher progeny in canola seeds indicates that these substrate is a potential host for *T. castaneum*. Diatomaceous earth and vegetable charcoal powder reduced the survival of adult beetles in canola in more than 60% at the end of the evaluation period. The *T. castaneum* adults and its offspring develops well in stored canola seeds. Additionally, the use of inert dusts, mainly diatomaceous earth and vegetable charcoal powder presents promising results of control of the beetle in stored canola seeds.

Keywords: stored products pests, inert powders, agro-energetics, pest control.
generously gifted by Dr. P. M. de Araújo); whole grain organic wheat (Ecobio®); and the colony standard food (pesticide-free wheat bran) as control treatment.

The experimental unit consisted in 50 g of each treatment inside a cylindrical glass vial (V = 250 mL) were 30 adult beetles randomly collected from the stock colony were placed in, then covered with voile fastened with a rubber band. The mortality analyses were recorded every two days until the 14th day after initial exposure (14 DAE), for the determination of cumulative mortality values.

To evaluate the progeny establishment, the methodology proposed by Khashaveh et al. (2009) was used. The survival insects remained for seven days after the mortality evaluation (=21 DAE) and then they were removed. The vials containing the substrate and eggs were kept untouched for another 45 days (=66 DAE) in the determined controlled conditions. After this period, the total number of larvae, pupae and adults emerged in the treatments were quantified and relatively compared (%) with the number of insects emerged from the organic wheat bran (control).

To access the control potential of inert dusts over *T. castaneum*, seeds of canola were coated with four treatments: diatomaceous earth (Keepdry™) (DE); basaltic rock powder (ultrafine microgabbro) (RP); *Eucalyptus grandis* W. Hill ex Maiden commercial charcoal powder (CP); and untreated canola seeds as control treatment.

In order to evaluate and compare each one of the products over the development of the beetle in canola seeds, the dusts were not associated with each other at this study. Each treatment was used at 2% dosage mixed in a plastic bag with canola seeds (12±1% moisture), being vigorously agitated for about 2 min.

After the treatment 50 g of treated canola seeds were added in glass vial (V = 250 mL) and unsexed adult insects (n = 30) placed on the same day of the treatment coating.

For the two bioassays, a completely randomized design was adopted. In the evaluation of *T. castaneum* adaptability to canola seeds five repetitions were performed, and the cumulative mortality was evaluated every two days over a period of 14 days. At the end of the mortality evaluation, the number of progeny insects emerged from each substrate were compared, in percentage, with the control treatment. The data were subjected to ANOVA and the means compared by Tukey test (p ≤ 0.05).

In the bioassay with inert dusts were used one single dosage for each of the four treatments, and four repetitions per treatment were carried out. The mortality data were submitted to ANOVA and means compared by Tukey test (p ≤ 0.05).

Mortality averages indicate that *T. castaneum* have potential to adapt to canola seeds of lapar PCI-0801 variety. The population maintained in canola seeds remained practically unaltered from 4 to 8 DAE, a significantly similar pattern to the beetle populations at control substrate until the last observations (Tab. 1). The *T. castaneum* mortality on whole wheat seeds was higher than the other treatments. In another study, *T. castaneum* did not affected wheat grains evaluating its germination after 120 days of exposure (Dal Bello et al. 2018). This probably occur due the capacity of the beetle in colonize preferentially deteriorated seeds for its establishment.

It was observed a significant reduction in the percentage of larvae, pupae and adults in whole wheat seeds when compared to both with control treatment (wheat bran) and with canola seeds at the final period (66 DAE) (Tab. 2). A significant higher emergence of adults in Canola seeds was also observed. These data show that *T. castaneum* development is favored when it feeds on canola seeds compared to the treatment with wheat bran seeds.

The results observed in the tabs. 1, 2 also show that *T. castaneum* did not establish as well in whole grains of wheat related to those in wheat bran and canola seeds. Wheat is the most cited stored grain where the *T. castaneum* is a pest in Brazil (Lorini et al. 2015), and its establishment in this substrate may be even more important than other insects that are considered primary stored wheat pests (Trematerra et al. 2000).

These data point out that the behavior of *T. castaneum* as a secondary pest is by the need of an initial injury in the integument of the hard wheat grain (Rees 2008). However, the establishment of this pest in intact canola seeds, observed in this study, could be possible because of physical characteristic of the canola seed in relation to wheat, which is softer by the accentuated lipid constitution (Zaderimowski & Sosulski 1978). Thus, this study may indicate that as well as in countries that lead the production of canola crops (Rees 2008; Khashaveh et al. 2009; Yu et al. 2017), *T. castaneum* has the potential to become an important stored grain pest of canola.

The application of inert dusts in seeds affected the development of adult’s insects, as well as the establishment of the progeny. The main control agents observed were diatomaceous earth (DE) and charcoal powder (CP), with mortality rates that have reached 100 and 60% at the end of the evaluation period (14 DAE), respectively (Tab. 3). The rock power treatment showed a cumulative mortality of only 25%.

The DE granules abrasive action can cause grooves in insect cuticle, further affecting the development of insect larvae which have thinner cuticle than adults, inducing increased loss of water (Lomakin et al. 2018).

Table 1. Mortality (%±SE) of *Tribolium castaneum* adults established on different substrates under laboratory conditions (25 ± 1°C; 12h photofase and 65±5% RH). Londrina, Brazil, 2017

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Mortality (% ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 DAE</td>
</tr>
<tr>
<td>Whole wheat seeds</td>
<td>6.0 ± 0.6 a</td>
</tr>
<tr>
<td>Wheat bran (control)</td>
<td>5.0 ± 0.4 a</td>
</tr>
<tr>
<td>Canola seeds</td>
<td>9.0 ± 1.0 a</td>
</tr>
</tbody>
</table>

*Means followed by the same letter in a column do not differ significantly according to Tukey test (p ≤ 0.05). SD: Standard error; DAE: Days after exposure. n = 750.

Table 2. Number (%±SE) of the different stages of *Tribolium castaneum* progeny established in different substrates 66 days after initial exposure under laboratory conditions (25 ± 1°C; 12h photofase and 65±5% RH). Londrina, Brazil, 2017

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Larvae</th>
<th>Pupae</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individuals (n ± SE)</td>
<td>Relative proportion to control (%)</td>
<td>Individuals (n ± SE)</td>
</tr>
<tr>
<td>Whole wheat seeds</td>
<td>1.4 ± 0.3 a</td>
<td>-89.86</td>
<td>0.4 ± 0.0 a</td>
</tr>
<tr>
<td>Wheat bran (control)</td>
<td>13.8 ± 0.9 b</td>
<td>-</td>
<td>1.4 ± 0.2 b</td>
</tr>
<tr>
<td>Canola seeds</td>
<td>12.6 ± 1.2 b</td>
<td>-9.70</td>
<td>1.8 ± 0.3 b</td>
</tr>
</tbody>
</table>

Note: means followed by the same letter in a column do not differ significantly according to Tukey test (p ≤ 0.05). SE: Standard error.
Additionally, these damages may increase the efficiency of associated control methods, such as foster entomopathogenic fungi infection in the cuticle, as seen in another studies with T. castaneum (Dal Bello et al. 2018). For this reason, DE may be the best suited method to control the development of this T. castaneum in stored canola seeds, being an economically viable product and which may affect the establishment of the pest in the substrate, reducing the adult’s viability.

Little is known about the activity of CP on stored grain pests. In Sitophilus oryzae (Linnaeus, 1793) (Coleoptera: Curculionidae) this inert powder showed no effects on mortality, but in the emergence of adults (progeny) when applied in stored maize seeds (Sitoe 2013). The CP associated with the entomopathogenic fungus Metarhizium anisopliae (Metschn, 1879) Sorokin, 1883 reduced populations of T. castaneum in infested wheat grains (Batta & Abu Safieh 2005). Our results are promising and feature the viability of charcoal dust as a control agent for this beetle in canola.

Another possibility for control is the integration of inert powders with reduced dosages of chemical insecticides. It is known that reduced dosages of cyromazine and pirimiphos-methyl significantly reduce Tribolium castaneum larvae viability, compromising its adult establishment (Kamaruzzaman et al. 2006).

The development of T. castaneum offspring demonstrated a trend of good development in canola seeds in terms of larval and pupal development, and also demonstrate that adults are favored by the oleaginous. Additionally, the use of inert dusts, mainly diatomaceous earth and vegetable charcoal powder presents promising results of control of this stored grain pest in canola seeds.

Acknowledgements

The authors thank P. M. Araújo of Agronomic Institute of Paraná - IAPAR, for the concession of canola seeds, to the Department of Agronomy-UEL for the laboratory support, and CAPES/ Araucaria Foundation for the financial support (Process number 88882.168655/2018-01).

Authors’ contributions

References

Trematerra, P.; Scarrrata, A.; Tamasi, E. (2000) Behavioural responses...

