The double-edged sword effect of warming on the soil predatory mite Cosmolaelaps brevistilis (Karg, 1978) (Mesostigmata: Laelapidae)

Authors

DOI:

https://doi.org/10.37486/2675-1305.ec05024

Keywords:

Acari, Biological Control, Predatory mite, Climate change

Abstract

In this study we used the average annual temperature in Brazil and four warming predictions to propose a maximum thermal threshold for the predatory mite Cosmolaelaps brevistilis (Karg, 1978) (Mesostigmata: Laelapidae) as an experimental model. Then, we evaluated the effects of warming on the biological parameters of C. brevistilis for conservation biological control. We observed higher rates of oviposition and predation of the prey Tyrophagus putrescentiae (Schrank, 1781) (Astigmatina: Acaridae) under warmer conditions at 75 ± 10% RH. The highest rates of prey consumption and oviposition were observed at 28°C compared to the others tested (22, 24, and 26°C). However, the egg viability of C. brevistilis was reduced at the same temperature. Therefore, temperature increases both positive and negative effects on the biological parameters of C. brevistilis which are important for the ecological interactions that are essential for biological control programs.

Downloads

Download data is not yet available.

References

Abbatiello, M. J. (1965) A culture chamber for rearing soil mites. Turtox News, 43: 162-164.

Barbosa, M. F. C.; Moraes, G. J. (2016) Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Experimental and Applied Acarology, 69, 289-296. doi: 10.1007/s10493-016-0043-4

Beaulieu, F.; Dowling, A. P. G.; Klompen, H.; Moraes, G. J.; Walter, D. E. (2011) Superorder Parasitiformes Reuter, 1909. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148: 123-128. doi: 10.11646/zootaxa.3148.1.23

Castilho, R. C.; Moraes, G. J.; Silva, E. S.; Freire, R. A. P.; Eira, F. C. (2009) The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. International Journal of Pest Management, 53(3): 181-185. doi: 10.1080/09670870902725783

Castilho, R. C.; Venancio, R.; Narita, J. P. Z. (2015) Mesostigmata as biological control agents, with emphasis on Rhodacaroidea and Parasitoidea. In: Carillo, D.; Moraes, G. J.; Peña, J. E. (Eds.), Prospects for biological control of plant feeding mites and other harmful organisms, pp. 1-32. Cham: Springer. doi: 10.1007/978-3-319-15042-0_1

Damos, P.; Savopoulou-Soultani, M. (2011) Temperature-driven models for insect development and vital thermal requirements. Psyche: A Journal of Entomology, 2012: 1-13. doi: 10.1155/2012/123405

de Paula, A. S.; Barreto, C. (2020) Potential distribution of Nysius simulans (Hemiptera: Lygaeidae) in soybean crops in South America under current and future climate. Journal of Economic Entomology, 113(4): 1702-1710. doi: 10.1093/jee/toaa089

Dixon, A. F. G.; Honěk, A.; Keil, P.; Kotela, M. A. A.; Šizling, A. L.; Jarošík, V. (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology, 23(2): 257-264. doi: 10.1111/j.1365-2435.2008.01489.x

Duarte, A. D. F.; Moreira, G. F.; Cunha, U. S. da; Moraes, G. J. (2017) Cosmolaelaps Berlese (Mesostigmata: Laelapidae) from southern Brazil, with a new record of a heteromorphic male, description of a new species, and a key to the species reported from that country. Zootaxa, 4286(4): 535-544. doi: 10.11646/zootaxa.4286.4.6

Freire, R. A. P.; Moraes, G. J.; Silva, E. S.; Vaz, A. C. F.; Castilho R. C. (2007) Biological control of Bradysia matogrossensis (Diptera: Sciaridae) in mushroom cultivation with predatory mites. Experimental and Applied Acarology, 42(2): 87-93. doi: 10.1007/s10493-007-9075-0

Ikemoto, T. (2005) Intrinsic optimum temperature for development of insects and mites. Environmental Entomology, 34(6): 1377-1387. doi: 10.1603/0046-225X-34.6.1377

King, A. M.; MacRae, T. H. (2015) Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 60: 59-75. doi: 10.1146/annurev-ento-011613-162107

Laws, A. N. (2017) Climate change effects on predator-prey interactions. Current Opinion in Insect Science, 23: 1-7. doi: 10.1016/j.cois.2017.06.010

Lemoine, N. P.; Drews, W. A.; Burkepile, D. E.; Parker J. D. (2013) Increased temperature alters feeding behavior of a generalist herbivore. Oikos, 122(12): 1669-1678. doi: 10.1111/j.1600-0706.2013.00457.x

Meiselman, M. R.; Kingan, T. G.; Adams, M. E. (2018) Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biology, 16(1): 1-15. doi: 10.1186/s12915-018-0484-9

Moreira, G. F.; de Morais, M. R.; Busoli, A. C.; Moraes, G. J. (2015) Life cycle of Cosmolaelaps jaboticabalensis (Acari: Mesostigmata: Laelapidae) on Frankliniella occidentalis (Thysanoptera: Thripidae) and two factitious food sources. Experimental and Applied Acarology, 65(2): 219-226. doi: 10.1007/s10493-014-9870-3

O'Connor, M. I. (2009) Warming strengthens an herbivore-plant interaction. Ecology, 90(2): 388-398. doi: 10.1890/08-0034.1

Ramachandran, D.; Lindo, Z.; Meehan, M. L. (2021) Feeding rate and efficiency in an apex soil predator exposed to short-term temperature changes. Basic and Applied Ecology, 50: 87-96. doi: 10.1016/j.baae.2020.11.006

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Skendžić, S.; Zavko, M.; Živković I. P.; Lešić, V.; Lemić, D. (2021) The impact of climate change on agricultural insect pests. Insects, 12(5): 440. doi: 10.3390/insects12050440

Systat Software (2013) SigmaPlot Version 12.3. San Jose, California. https://systatsoftware.com/sigmaplot/

Verberk, W. C. E. P.; Sommer, U.; Davidson, R. L.; Viant, M. R. (2013) Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integrative and Comparative Biology, 53(4): 609-619. doi: 10.1093/icb/ict015

Downloads

Published

2023-09-29

How to Cite

Barroso, G., Barreto, C., Padilha, A. C., Pazini, J. B., Santos, J. C., Godoy, L. L., & Yamamoto, P. T. (2023). The double-edged sword effect of warming on the soil predatory mite Cosmolaelaps brevistilis (Karg, 1978) (Mesostigmata: Laelapidae). Entomological Communications, 5, ec05024. https://doi.org/10.37486/2675-1305.ec05024

Issue

Section

Bioassay

Metrics

Funding data